

EJSM Europa Orbiter Mission Design and Architecture

Karla B. Clark

Jet Propulsion Laboratory, California Institute of Technology

Scientific Context

- 1995 Galileo begins returning data on Jupiter and its Icy moons
- Galileo data is analyzed and augmented with data from Hubble Space Telescope and ground based observations
- Some questions are answered, many more are born
- Models are created and tested
 - Some are disproved or refined
 - Others remain unproven
- Hypotheses are developed
- Progress is slowed
 - Only small amounts of new data will become available until another mission visits the system

NASA / ESA / UC-Berkeley

Europa-Jupiter System Mission Concept

NASA Jupiter Europa Orbiter

The Emergence of Habitable Worlds Around Gas Giants

Jupiter System

ESA Jupiter Ganymede Orbiter

6/3/08

EJSM Decomposition

The Emergence of Habitable Worlds Around Gas Giants

JEO Mission Context

- 1997-2008 5 major NASA efforts and 1 JPL internal study to Europa exploration
 - Europa Orbiter EO-2001
 - Highly resource constrained
 - ➤ Jupiter Icy Moons Orbiter
 - Ambitious
 - Europa Geophysical Explorer
 - Return to conventional approach
 - Europa Explorer EE-2006 (JPL Internal)
 - Resolve challenging technical issues while requiring No New Technology
 - ➤ Europa Explorer EE-2007
 - Peer Review radiation approach
 - ➤ Jupiter Europa Orbiter JEO-2008
 - Find sweet spot

Four Science Definition Teams all concluded that an orbiter at Europa is essential for validating the hypotheses and answering the questions

2008 JEO Mission Concept

Concept: Europa Orbiter with Jovian Satellite Tour

Launch Vehicle: Atlas V 541

Power Source: 5 MMRTG (531 W EOM)

Mission Timeline:

Launch: 8/2016 (VEGA)

Jupiter arrival: 8/2021

Jovian system tour phase: ~18-24 months

Europa orbital phase: 105 days

Spacecraft final disposition: Europa surface Impact

Instruments: 79 kg, 104 W

Radiation Focused Design

6/3/08

JEO Baseline Interplanetary Trajectory

Launch
21 August 2016

DSM (324 m/s) 12 April 2019

Jupiter Orbit Insertion 10 August 2021

Representative Science Mission Design

Jupiter system science opportunities, prioritized Europa science, and capable flight system enable substantial scientific data return.

Key Risk: Impact of Radiation and Planetary Protection on Design

Risk Area	Components	Mitigation	Impact
Radiation	 a) Dose rate effects b) Sensor impacts (SNR) c) FPGA qualification d) Non-Volatile Memory capability e) Internal Electrostatic Discharge f) Design techniques 	 a) Quantify dose rate effects b) Use ASICs in place of FPGAs c) FPGA, memory and sensor radiation testing d) Document and disseminate design techniques and guidelines e) Early subject matter expert engagement 	a) Reduced cost risk and uncertainty
Planetary Protection	a) Sensor sterilization capability b) Design techniques	a) Document design techniques and guidelinesb) Early subject matter expert engagement	a) Reduced cost risk and uncertainty
Instrument Maturity	a) Level of information available for potential providers b) Wide range of experience of potential providers c) Development schedule	a) Document design techniques and guidelines b) Instrument provider workshops - early subject matter expert engagement c) Early and streamlined AO with confirmation review	a) Maximize time instruments can work with experts b) Reduce cost risk and uncertainty at "commitment"

Radiation environment and planetary protection requirements require early and focused attention to mitigate risk

Radiation Challenge

- Europa missions experience significant radiation levels
 - Beyond any other NASA or ESA mission
- Ongoing investment by NASA, ESA, industry and other government agencies has matured technology and developed design approaches to deal with high radiation levels
- Risk mitigation starts early
 - > Parts and materials are available
 - > Design techniques can be applied
 - Operational techniques are employed

A Decade of Investment Has Reduced JEO Risk

Current JEO Radiation Task Plan

- Individual items were identified and understood
- The phasing of tasks under the plan is driven by the following tentative milestones
 - Mission Concept Review
 - Instrument Announcement of Opportunity (AO)
 - Preliminary Mission and System Review (PMSR)
 - Preliminary Design Review (PDR)
- Priorities are set
 - Instrument AO preparation material
 - System engineering leading to PMSR
 - Engineering design leading up to PDR
- Identified activities for FY08 exceed monetary resources
 - Activities will continue into FY09

#	Radiation Task
1	System Reliability Model
	Parts & Circuit Models & Validation
	Systems Element Models & Validation
2	Environment and Shielding Models
	Environment & Shielding Model
3	Radiation Design & Analysis Methods
	Tutorials & Guidelines - Environment, Shielding,
	Parts, Materials, Circuits and Subsystems
4	Sensors and Detectors
	Science detectors: assessment and testing
	Engr detectors: assessment and testing
5	Parts Evaluation & Testing
	Testing strategy including TID, ELDRs
	Juno parts testing exetension
	Part/Device testing
6	Approved Parts and Materials

A prioritized plan has been made and is being executed

Planetary Protection Challenge

- End-of-Mission is Europa surface impact
- Sterilization is combination of pre- and post- launch sterilization
 - > Pre-launch: heat, chemical or other type
 - > Post-launch: external surfaces sterilized by radiation
- Some components are particularly concerning
 - > Certain detectors
 - Batteries
- Protection from re-contamination is essential
- Early consideration of approach required for incorporation of requirements into design of components

Instrument Community Engagement

- Mission design elements and requirements are being addressed by Project
- Instruments would be selected by NASA HQ via Announcement of Opportunity
- To enable well understood, low risk proposals
 - Communicate primary issues
 - Communicate technology status and options
 - Document and communicate design mitigation strategies

Finding the Sweet Spot - Balance

Science Value

6U Cards Shielded Chassis

Resources

Mass

Power

Dollars

Cost Overrun

Launch Delay

Performance Degradation

Premature Failure